Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055799

ABSTRACT

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Humans , Rats , Animals , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/therapy , Low Back Pain/complications , Neuronal Outgrowth
2.
JOR Spine ; 6(1): e1238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994456

ABSTRACT

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

3.
J Orthop Res ; 41(6): 1148-1161, 2023 06.
Article in English | MEDLINE | ID: mdl-36203346

ABSTRACT

Regenerative therapies for tendon are falling behind other tissues due to the lack of an appropriate and potent cell therapeutic candidate. This study aimed to induce tenogenesis using stable Scleraxis (Scx) overexpression in combination with uniaxial mechanical stretch of iPSC-derived mesenchymal stromal-like cells (iMSCs). Scx is the single direct molecular regulator of tendon differentiation known to date. Bone marrow-derived (BM-)MSCs were used as reference. Scx overexpression alone resulted in significantly higher upregulation of tenogenic markers in iMSCs compared to BM-MSCs. Mechanoregulation is known to be a central element guiding tendon development and healing. Mechanical stimulation combined with Scx overexpression resulted in morphometric and cytoskeleton-related changes, upregulation of early and late tendon markers, and increased extracellular matrix deposition and alignment, and tenomodulin perinuclear localization in iMSCs. Our findings suggest that these cells can be differentiated into tenocytes and might be a better candidate for tendon cell therapy applications than BM-MSCs.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell Differentiation , Tendons , Extracellular Matrix
4.
Sci Rep ; 12(1): 18701, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333414

ABSTRACT

Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro µCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Mice , Animals , Osteogenesis , Ink , Neural Crest , Mice, Inbred NOD , Mice, SCID , Cell Differentiation
5.
iScience ; 25(7): 104504, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35754733

ABSTRACT

The origin, composition, distribution, and function of cells in the human intervertebral disc (IVD) have not been fully understood. Here, cell atlases of both human neonatal and adult IVDs have been generated and further assessed by gene ontology pathway enrichment, pseudo-time trajectory, histology, and immunofluorescence. Comparison of cell atlases revealed the presence of two subpopulations of notochordal cells (NCs) and their associated markers in both the neonatal and adult IVDs. Developmental trajectories predicted 7 different cell states that describe the developmental process from neonatal to adult cells in IVD and analyzed the NC's role in the IVD development. A high heterogeneity and gradual transition of annulus fibrosus cells (AFCs) in the neonatal IVD was detected and their potential relevance in IVD development assessed. Collectively, comparing single-cell atlases between neonatal and adult IVDs delineates the landscape of IVD cell biology and may help discover novel therapeutic targets for IVD degeneration.

6.
Stem Cells Transl Med ; 10(5): 797-809, 2021 05.
Article in English | MEDLINE | ID: mdl-33512772

ABSTRACT

Replacement of lost cranial bone (partly mesodermal and partly neural crest-derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow-derived mesenchymal stromal cells (mesoderm-derived BM-MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell-mesenchymal progenitor cells (iNCC-MPCs) improves implant-to-bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC-MPCs. BM-MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (µCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC-MPC-Luc2 vs BM-MSC-Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, µCT analysis showed enhanced structural parameters in the iNCC-MPC-Luc2 group and increased bone volume in the BM-MSC-Luc2 group compared to controls. Histology demonstrated improved integration of iNCC-MPC-Luc2 allografts compared to BM-MSC-Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft-host interphase in cell-seeded groups. The iNCC-MPC-Luc2 group also demonstrated improved biomechanical properties compared to BM-MSC-Luc2 implants and cell-free controls. Our results show an improved integration of iNCC-MPC-Luc2-coated allografts compared to BM-MSC-Luc2 and controls, suggesting the use of iNCC-MPCs as potential cell source for cranial bone repair.


Subject(s)
Bone-Implant Interface , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Allografts , Animals , Bone Marrow Cells , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred NOD , Mice, SCID , Neural Crest/cytology , Osseointegration , Skull/diagnostic imaging , X-Ray Microtomography
7.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352698

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with advanced glycation end product (AGE) enrichment and considered a risk factor for intervertebral disc (IVD) degeneration. We hypothesized that systemic AGE inhibition, achieved using pyridoxamine (PM), attenuates IVD degeneration in T2DM rats. To induce IVD degeneration, lumbar disc injury or sham surgery was performed on Zucker Diabetic Sprague Dawley (ZDSD) or control Sprague Dawley (SD) rats. Post-surgery, IVD-injured ZDSD rats received daily PM dissolved in drinking water or water only. The resulting groups were SD uninjured, SD injured, ZDSD uninjured, ZDSD injured, and ZDSD injured + PM. Levels of blood glycation and disc degeneration were investigated. At week 8 post-surgery, glycated serum protein (GSP) levels were increased in ZDSDs compared to SDs. PM treatment attenuated this increase. Micro-MRI analysis demonstrated IVD dehydration in injured versus uninjured SDs and ZDSDs. In the ZDSD injured + PM group, IVD dehydration was diminished compared to ZDSD injured. AGE levels were decreased and aggrecan levels increased in ZDSD injured + PM versus ZDSD injured rats. Histological and immunohistochemical analyses further supported the beneficial effect of PM. In summary, PM attenuated GSP levels and IVD degeneration processes in ZDSD rats, demonstrating its potential to attenuate IVD degeneration in addition to managing glycemia in T2DM.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Glycation End Products, Advanced/antagonists & inhibitors , Intervertebral Disc Degeneration/prevention & control , Pyridoxamine/pharmacology , Vitamin B Complex/pharmacology , Animals , Blood Glucose , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/pathology , Male , Rats , Rats, Sprague-Dawley , Rats, Zucker
8.
Am J Sports Med ; 48(12): 3002-3012, 2020 10.
Article in English | MEDLINE | ID: mdl-32924528

ABSTRACT

BACKGROUND: There is a high incidence of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) injury, and these injuries represent an enormous health care economic burden. In an effort to address this unmet clinical need, there has been increasing interest in cell-based therapies. PURPOSE: To establish a translational large animal model of PTOA and demonstrate the feasibility of intra-articular human cell-based interventions. STUDY DESIGN: Descriptive laboratory study. METHODS: Nine Yucatan mini-pigs underwent unilateral ACL transection and were monitored for up to 12 weeks after injury. Interleukin 1 beta (IL-1ß) levels and collagen breakdown were evaluated longitudinally using enzyme-linked immunosorbent assays of synovial fluid, serum, and urine. Animals were euthanized at 4 weeks (n = 3) or 12 weeks (n = 3) after injury, and injured and uninjured limbs underwent magnetic resonance imaging (MRI) and histologic analysis. At 2 days after ACL injury, an additional 3 animals received an intra-articular injection of 107 human bone marrow-derived mesenchymal stem cells (hBM-MSCs) combined with a fibrin carrier. These cells were labeled with the luciferase reporter gene (hBM-MSCs-Luc) as well as fluorescent markers and intracellular iron nanoparticles. These animals were euthanized on day 0 (n = 1) or day 14 (n = 2) after injection. hBM-MSC-Luc viability and localization were assessed using ex vivo bioluminescence imaging, fluorescence imaging, and MRI. RESULTS: PTOA was detected as early as 4 weeks after injury. At 12 weeks after injury, osteoarthritis could be detected grossly as well as on histologic analysis. Synovial fluid analysis showed elevation of IL-1ß shortly after ACL injury, with subsequent resolution by 2 weeks after injury. Collagen type II protein fragments were elevated in the synovial fluid and serum after injury. hBM-MSCs-Luc were detected immediately after injection and at 2 weeks after injection using fluorescence imaging, MRI, and bioluminescence imaging. CONCLUSION: This study demonstrates the feasibility of reproducing the chondral changes, intra-articular cytokine alterations, and body fluid biomarker findings consistent with PTOA after ACL injury in a large animal model. Furthermore, we have demonstrated the ability of hBM-MSCs to survive and express transgene within the knee joint of porcine hosts without immunosuppression for at least 2 weeks. CLINICAL RELEVANCE: This model holds great potential to significantly contribute to investigations focused on the development of cell-based therapies for human ACL injury-associated PTOA in the future (see Appendix Figure A1, available online).


Subject(s)
Anterior Cruciate Ligament Injuries/complications , Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Osteoarthritis/therapy , Animals , Anterior Cruciate Ligament Injuries/therapy , Biomarkers/analysis , Cartilage, Articular/diagnostic imaging , Cytokines/analysis , Disease Models, Animal , Humans , Knee Joint/physiopathology , Knee Joint/surgery , Osteoarthritis/etiology , Swine , Swine, Miniature , Synovial Fluid
9.
JOR Spine ; 3(2): e1092, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32613167

ABSTRACT

INTRODUCTION: Intervertebral disc (IVD) degeneration is often associated with low back pain and radiating leg pain. The purpose of this study is to develop a reproducible and standardized preclinical model of painful lumbar IVD degeneration by evaluation of structural and behavioral changes in response to IVD injury with increasing needle sizes. This model can be used to develop new therapies for IVD degeneration. METHODS: Forty-five female Sprague Dawley rats underwent anterior lumbar disc needle puncture at levels L4-5 and L5-6 under fluoroscopic guidance. Animals were randomly assigned to four different experimental groups: needle sizes of 18 Gauge (G), 21G, 23G, and sham control. To monitor the progression of IVD degeneration and pain, the following methods were employed: µMRI, qRT-PCR, histology, and biobehavioral analysis. RESULTS: T1- and T2-weighted µMRI analysis showed a correlation between the degree of IVD degeneration and needle diameter, with the most severe degeneration in the 18G group. mRNA expression of markers for IVD degeneration markers were dysregulated in the 18G and 21G groups, while pro-nociceptive markers were increased in the 18G group only. Hematoxylin and Eosin (H&E) and Alcian Blue/Picrosirius Red staining confirmed the most pronounced IVD degeneration in the 18G group. Randall-Selitto and von Frey tests showed increased hindpaw sensitivity in the 18G group. CONCLUSION: Our findings demonstrate that anterior disc injury with an 18G needle creates severe IVD degeneration and mechanical hypersensitivity, while the 21G needle results in moderate degeneration with no increased pain sensitivity. Therefore, needle sizes should be selected depending on the desired phenotype for the pre-clinical model.

10.
J Biomater Appl ; 35(4-5): 532-543, 2020.
Article in English | MEDLINE | ID: mdl-32627633

ABSTRACT

INTRODUCTION: Synthetic bone grafts are often used to achieve a well-consolidated fusion mass in spinal fusion procedures. These bone grafts function as scaffolds, and ideally support cell function and facilitate protein binding. OBJECTIVE: The aim was to characterize an electrospun, synthetic bone void filler (Reb) for its bone morphogenetic protein (BMP)-2 release properties and support of human mesenchymal stem cell (hMSC) function in vitro, and its efficacy in promoting BMP-2-/bone marrow aspirate-(BMA)-mediated posterolateral spinal fusion (PLF) in vivo. METHODS: BMP-2 release kinetics from Reb versus standard absorbable collagen sponge (ACS) was determined. hMSC adhesion and proliferation on Reb was tested using cell counting, fluorescence microscopy and MTS. Cell osteogenic differentiation was quantified via cellular alkaline phosphatase (ALP) activity. For in vivo analysis, 18 Lewis rats were treated during PLF surgery with the following groups: (I) Reb + BMA, (II) Reb + BMA + BMP-2 and (III) BMA. A safe, minimally effective dose of BMP-2 was used. Fusion consolidation was followed for 3 months using radiography and micro-CT. After sacrifice, fusion rate and biomechanical stiffness was determined using manual palpation, biomechanical tests and histology. RESULTS: In vitro, BMP-2 release kinetics were similar between Reb versus ACS. MSC proliferation and differentiation were increased in the presence of Reb. At 3 months post-surgery, fusion rates were 29% (group I), 100% (group II), and 0% (group III). Biomechanical stiffness was higher in group II versus I. Micro-CT showed an increased bone volume and connectivity density in group II. Trabecular thickness was increased in group I versus II. H&E staining showed newly formed bone in group II only. CONCLUSIONS: Reb possesses a high protein binding affinity and promotes hMSC function. Combination with BMA and minimal dose BMP-2 allowed for 100% bone fusion in vivo. This data suggests that a minimally effective dose of BMP-2 can be used when combined with Reb.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Transplantation/methods , Collagen/chemistry , Spinal Fusion/methods , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena , Body Fluids/cytology , Body Fluids/metabolism , Bone Marrow/metabolism , Cell Culture Techniques , Cell Differentiation , Female , Humans , Mesenchymal Stem Cells , Osteogenesis , Radiography , Rats , Tissue Engineering , X-Ray Microtomography
11.
Spine J ; 20(9): 1480-1491, 2020 09.
Article in English | MEDLINE | ID: mdl-32413485

ABSTRACT

BACKGROUND CONTEXT: Nonphysiological mechanical loading and inflammation are both critically involved in intervertebral disc (IVD) degeneration, which is characterized by an increase in cytokines and matrix metalloproteases (MMPs) in the nucleus pulposus (NP). This process is known to be mediated by the NF-κB pathway. CLINICAL SIGNIFICANCE: Current clinical treatments for IVD degeneration focus on the alleviation of symptoms rather than targeting the underlying mechanism. Injection of an NF-κB inhibitor may attenuate the progression of IVD degeneration. PURPOSE: To investigate the ability of the NF-κB inhibitor, NEMO binding domain peptide (NBD), to alter IVD degeneration processes by reducing IL-1ß- and mechanically-induced cytokine and MMP levels in human nucleus pulposus cells in vitro, and by attenuating IVD degeneration in an in vivo rat model for disc degeneration. STUDY DESIGN: Experimental in vitro and animal model. PATIENT SAMPLE: Discarded specimens of lumbar disc from 21 patients, and 12 Sprague Dawley rats. OUTCOME MEASURES: Gene and protein expression, cell viability, µMRI and histology. METHODS: IL-1ß-prestimulated human nucleus pulposus cells embedded into fibrin constructs were loaded in the Flexcell FX-5000 compression system at 5 kPa and 1 Hz for 48 hours in the presence and absence of NBD. Unloaded hNPC/fibrin constructs served as controls. Cell viability in loaded and unloaded constructs was quantified, and gene and protein expression levels determined. For in vivo testing, a rat needle disc puncture model was employed. Experimental groups included injured discs with and without NBD injection and uninjured controls. Levels of disc degeneration were determined via µMRI, qPCR and histology. Funding sources include $48,874 NASS Young Investigator Research Grant and $119,174 NIH 5K01AR071512-02. There were no applicable financial relationships or conflicts of interest. RESULTS: Mechanical compression of hNPC/fibrin constructs resulted in upregulation of MMP-3 and IL-8. Supplementation of media with 10 µM NBD during loading increased cell viability, and decreased MMP-3 gene and protein levels. IVD injury in rat resulted in an increase in MMP-3, IL-1ß and IL-6 gene expression. Injections of 250 µg of NBD during disc injury resulted in decreased IL-6 gene expression. µMRI analysis demonstrated a reduction of disc hydration in response to disc needle injury, which was attenuated in NBD-treated IVDs. Histological evaluation showed NP and AF lesion in injured discs, which was attenuated by NBD injection. CONCLUSIONS: The results of this study show NBD peptide's capacity to reduce IL-1ß- and loading-induced MMP-3 levels in hNPC/fibrin constructs while increasing the cells' viability, and to attenuate IVD degeneration in rat, involving downregulation of IL-6. Therefore, NBD may be a potential therapeutic agent to treat IVD degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Humans , Intervertebral Disc Degeneration/drug therapy , NF-kappa B , Peptides , Rats , Rats, Sprague-Dawley
12.
Spine J ; 20(2): 300-306, 2020 02.
Article in English | MEDLINE | ID: mdl-31377475

ABSTRACT

BACKGROUND CONTEXT: Smoking is detrimental to obtaining a solid spinal fusion mass with previous studies demonstrating its association with pseudoarthrosis in patients undergoing spinal fusion. Varenicline is a pharmacologic adjunct used in smoking cessation which acts as a partial agonist of the same nicotinic receptors activated during tobacco use. However, no clinical or basic science studies to date have characterized if varenicline has negative effects on spinal fusion and bone healing by itself. PURPOSE: Our study's aim was to elucidate whether varenicline affects the frequency or quality of posterolateral spinal fusion in a rodent model at an endpoint of 12 weeks. STUDY DESIGN: Randomized control trial. PATIENT SAMPLE: Fourteen male Lewis rats randomly separated into two experimental groups. OUTCOME MEASURES: Manual palpation of fusion segment, radiography, µCT imaging, and four-point bend. METHODS: Fourteen male Lewis rats were randomly separated into two experimental groups undergoing L4-L5 posterior spinal fusion procedure followed by daily subcutaneous injections of human dose varenicline or saline (control) for 12 weeks postsurgery. Spine samples were explanted, and fusion was determined via manual palpation of segments by two independent observers. High-resolution radiographs were obtained to evaluate bridging fusion mass. µCT imaging was performed to characterize fusion mass and consolidation. Lumbar spinal fusion units were tested in four-point bending to evaluate stiffness and peak load. Study funding sources include $5000 OREF Grant. There were no applicable financial relationships or conflicts of interest. RESULTS: At 3 months postsurgery, 12 out of 14 rats demonstrated lumbar spine fusion (86% fused) with no difference in fusion frequency between the varenicline and control groups as detected by manual palpation. High-resolution radiography revealed six out of seven rats (86%) having complete fusion in both groups. µCT showed no significant difference in bone mineral density or bone fraction volume between groups in the region of interest. Biomechanical testing demonstrated no significant different in the average stiffness or peak loads at the fusion site of the varenicline and control groups. CONCLUSION: Based on the results of our rat study, there is no indication that varenicline itself has a detrimental effect on the frequency and quality of spinal fusion.


Subject(s)
Bone Regeneration/drug effects , Lumbar Vertebrae/surgery , Postoperative Complications/etiology , Smoking Cessation Agents/adverse effects , Spinal Fusion/adverse effects , Varenicline/adverse effects , Animals , Male , Random Allocation , Rats , Rats, Inbred Lew
13.
Spine J ; 20(5): 800-808, 2020 05.
Article in English | MEDLINE | ID: mdl-31759133

ABSTRACT

STUDY DESIGN: Experimental animal model. OBJECTIVE: The purpose of this study was to evaluate the hypothesis that insulin dependent diabetes mellitus (IDDM) will inhibit the formation of a solid bony union after spinal fusion surgery via an alteration of the microenvironment at the fusion site in a rat model. SUMMARY OF BACKGROUND DATA: Previous studies report diabetes mellitus (DM) and specifically IDDM as a risk factor for complications and poor surgical outcomes following spinal fusion. METHODS: Twenty control and 22 diabetic rats were obtained at 5 weeks of age. At 20 weeks of age, all animals underwent posterolateral lumbar fusion surgery using a tailbone autograft with diabetic rats receiving an implantable time release insulin pellet. A subset of rats was sacrificed 1-week postsurgery for growth factor (PDGF, IGF-I, TGF-ß, and VEGF) and proinflammatory cytokine ELISA analysis. All other rats were sacrificed 3-months postsurgery for fusion evaluation via manual palpation and micro CT. Glycated hemoglobin (HbA1c) was measured at surgery and sacrifice on all animals. RESULTS: Compared with healthy rats undergoing spinal fusion, rats with IDDM demonstrated a significant reduction in manual palpation fusion rates (16.7% vs. 43%, p<.05). Average bone mineral density, bone volume, and bone volume fraction were also significantly reduced and negatively correlated to blood glucose levels. IL-1B, IL-5, IL-10, TNF-α, and KC/GRO were significantly elevated in fusion beds of IDDM rats. CONCLUSIONS: This study demonstrates that rats with IDDM demonstrate a reduced rate and quality of spinal fusion with increased local levels of inflammatory cytokines. Targeted modalities are required to improve bone healing in this growing, high-risk population. CLINICAL SIGNIFICANCE: This is the first translational animal model of IDDM to evaluate the rate and quality of spinal fusion while controlling for other surgical and patient-related risk factors. Our findings demonstrate the complex nature by which IDDM impairs bone healing and highlight the need for additional basic science research to further elucidate this mechanism in order to develop more effective therapeutic interventions.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Spinal Diseases , Spinal Fusion , Animals , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Rats , Spinal Fusion/adverse effects
14.
Med Sci Monit ; 25: 9531-9537, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31836696

ABSTRACT

BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of lower back pain, which carries substantial morbidity and economic cost. Omega-3 fatty acids (n-3 FA) are known to reduce inflammatory processes with a relatively benign side effect profile. This study aimed to investigate the effect of n-3 FA supplementation on IVD degeneration. MATERIAL AND METHODS Two non-contiguous lumbar discs of 12 Sprague Dawley rats were needle-punctured to induce disc degeneration. Post-surgery, rats were randomly assigned to either a daily n-3 FA diet (530 mg/kg/day of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in a 2: 1 ratio, administered in sucrose solution) or control diet (sucrose solution only), which was given for the duration of the study. After 1 month, blood serum arachidonic acid/eicosapentaenoic acid (AA/EPA) ratios were analyzed. After 2 months, micro-MRI (magnetic resonance imaging) analysis and histological staining of disc explants were performed to analyze the IVD. RESULTS A reduction of blood AA/EPA ratios from 40 to 20 was demonstrated after 1 month of daily supplementation with n-3 FA. Micro-MRI analysis showed an injury-induced reduction of IVD hydration, which was attenuated in rats receiving n-3 FA. Histological evaluation demonstrated the destruction of nucleus pulposus tissue in response to needle puncture injury, which was less severe in the n-3 FA diet group. CONCLUSIONS The results of this study suggest that n-3 FA dietary supplementation reduces systemic inflammation by lowering AA/EPA ratios in blood serum and has potential protective effects on the progression of spinal disc degeneration, as demonstrated by reduced needle injury-induced dehydration of intervertebral discs and reduced histological signs of IVD degeneration.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Intervertebral Disc Degeneration/drug therapy , Animals , Dietary Supplements , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Low Back Pain/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/veterinary , Male , Nucleus Pulposus/cytology , Rats , Rats, Sprague-Dawley
15.
Spine J ; 19(6): 1085-1093, 2019 06.
Article in English | MEDLINE | ID: mdl-30529784

ABSTRACT

BACKGROUND CONTEXT: Some clinical reports suggest diabetes may have a negative effect on spinal fusion outcomes, although no conclusive experimental research has been conducted to investigate the causality, impact, and inherent risks of this growing patient population. PURPOSE: To analyze the hypothesis that type 2 diabetes (T2DM) inhibits the formation of a solid bony union after spinal fusion surgery by altering the local microenvironment at the fusion site through a reduction in growth factors critical for bone formation. STUDY DESIGN/SETTING: In vivo rodent model of type 2 diabetes. METHODS: Twenty control (Sprague Dawley, SD) and 30 diabetic (Zucker Diabetic Sprague Dawley, ZDSD) rats underwent posterolateral and laminar fusion surgery using a tailbone autograft implanted onto the L4/L5 transverse processes. A subset of animals was sacrificed 1-week postsurgery for growth factor analysis. Remaining rats were sacrificed 3-month postsurgery for fusion evaluation via manual palpation, micro-CT, and histology. RESULTS: There was no significant difference in the manual palpation fusion rate between ZDSD rats and SD control rats. Growth factor assay of fusion site explants at early sacrifice demonstrated PDGF was upregulated in the ZDSD rats. TGFB, IGF, and VEGF were not statistically different between groups. Bone mineral density as determined by micro-CT was significantly lower in ZDSD rats compared to SD controls and was a significant function of HbA1c. CONCLUSIONS: Data generated in this in vivo rat model of T2DM demonstrate that the metabolic dysregulation associated with the diabetic condition negatively impacts the quality and density of the formed fusion mass. Increased measures of diabetic status, as determined by blood glucose and HbA1c, were correlated with decreased quality of formed fusion, highlighting the importance of diabetic status monitoring and regulation to bone health, particularly during bone healing. CLINICAL RELEVANCE: T2DM rats demonstrated increased rates of infection, metabolic dysregulation, and a reduction in spinal fusion consolidation. Clinicians should consider these negative effects during preoperative care and treatment of this growing patient population.


Subject(s)
Bone Density , Diabetes Mellitus, Type 2/complications , Osteogenesis , Postoperative Complications/metabolism , Spinal Fusion/adverse effects , Animals , Male , Postoperative Complications/etiology , Postoperative Complications/pathology , Rats , Rats, Sprague-Dawley , Rats, Zucker
16.
Tissue Eng Part A ; 24(21-22): 1641-1651, 2018 11.
Article in English | MEDLINE | ID: mdl-29766758

ABSTRACT

Recombinant human bone morphogenic protein-2 (BMP-2)-loaded absorbable collagen sponges (ACS) have been successfully used to enhance bone formation and to induce spinal fusion in humans. However, side effects, such as soft tissue edema and inflammation, have been reported. NEMO binding domain peptide (NBD) inhibits activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of immune response. In this study, we investigated NBD's potential to reduce BMP-2-induced soft tissue inflammation without affecting BMP-2-mediated spinal fusion in rat. For evaluation of soft tissue inflammation, ACS containing BMP-2, BMP-2+NBD, NBD, or ACS only were implanted into intramuscular paraspinal sites of 32 rats. At day 2 postsurgery, edema formation at the implant sites was assessed using magnetic resonance imaging. T2-weighted relaxation time (T2-RT) values were increased in the BMP-2 group compared with BMP-2+NBD, NBD, and ACS groups. No difference in T2-RT values was detected between BMP-2+NBD versus NBD and ACS controls. Postsacrifice, histological analysis of the implant-surrounding zones showed increased mononuclear cell infiltration in the BMP-2 group compared with BMP-2+NBD and controls. The presence of BMP-2 increased relative NF-κB binding and gene expression of inflammatory markers, interleukin (IL)1ß, IL6, IL18, and chemokine ligand (CCL)2 and CCL3 compared with controls. In the BMP-2+NBD group, cytokine expression was blocked. No differences were found between BMP-2+NBD and control groups. For evaluation of spinal fusion, posterolateral intertransverse lumbar fusion procedures were performed on 16 rats. ACS were loaded with BMP-2 or BMP-2+NBD. After sacrifice at week 12, microcomputed tomographic assessment of the fusion site detected a higher bone volume and reduced trabecular spacing in the BMP-2+NBD group compared with BMP-2. Histological analysis did not show any differences in newly formed bone microarchitecture. In summary, addition of NBD to BMP-2-loaded ACS reduces BMP-2-induced soft tissue edema formation and mononuclear cell infiltration, diminishes NF-κB binding, and thus blocks transcription of NF-κB-regulated cytokines in rat. Furthermore, NBD stimulates bone formation in BMP-2-mediated spinal fusion, possibly through crosstalk of the NF-κB pathway with other pathways. The results of this study might provide the basis to develop new therapeutic bone grafting approaches with combinatory administration of BMP-2 and NBD for spinal fusion.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Edema/prevention & control , Peptides/pharmacology , Spinal Fusion , Animals , Edema/metabolism , Edema/pathology , Humans , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacology
17.
J Biomed Mater Res A ; 95(4): 1114-24, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20878902

ABSTRACT

Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.


Subject(s)
Biomimetic Materials/pharmacology , Bone Regeneration/drug effects , Extracellular Matrix/metabolism , Materials Testing , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Amino Acid Sequence , Animals , Biomarkers/metabolism , Cattle , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Female , Humans , Integrins/metabolism , Male , Mesenchymal Stem Cells/metabolism , Molecular Sequence Data , Osteogenesis/drug effects , Peptides/chemistry , Peptides/metabolism , Reproducibility of Results
18.
Tissue Eng Part A ; 16(10): 3139-48, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486790

ABSTRACT

Angiogenesis is essential to tissue reconstitution, is sensitive to mechanical stresses, and currently represents one of the major challenges in tissue engineering. The pro-angiogenic matrix metalloprotease-2 (MMP-2) is upregulated in mechanically loaded mesenchymal stem cells (MSCs). Therefore, MMP-2 may provide a regulating link between angiogenesis and the surrounding mechanical conditions. This study aimed to modulate MMP-2 levels by mechanical loading of MSCs embedded in a three-dimensional matrix as well as to investigate the mechanism of MMP-2 regulation along with its contribution to angiogenesis stimulation. MMP-2-inducing conditions (30% compression, 1 Hz, 72 h) were defined after varying loading parameters. Addition of the Golgi-disturbing agent Brefeldin A suppressed this mechanical upregulation of MMP-2. Analysis of enzymatic activities demonstrated an enhancement of pro-MMP-2, mature MMP-2, and tissue inhibitor of metalloproteases-2. Further, mechano-regulation of MMP-14 and mature MMP-2 was dependent upon the activity of furin, a proprotein processing endoprotease. Angiogenesis was stimulated by conditioned media from MSCs loaded at inducing conditions. This augmentation of angiogenesis was hindered by inhibition of pro-MMP-2 and mature MMP-2. In conclusion, mechanical stimulation of MSCs in a three-dimensional matrix induces pro-MMP-2 secretion and MMP-2 activation, potentially via the activation complex consisting of MMP-2/-14/tissue inhibitor of metalloproteases-2. Mechano-regulated pro-MMP-2 and mature MMP-2 seem to contribute to angiogenesis stimulation. Thus, an application of these loading parameters could augment vascularization of tissue-engineered constructs based on the described MMP-2-dependent mechanism.


Subject(s)
Biomechanical Phenomena/physiology , Matrix Metalloproteinase 2/metabolism , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/physiology , Bioreactors , Cell Proliferation , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Tissue Engineering , Tissue Scaffolds
19.
Stem Cells ; 25(8): 1985-94, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17495113

ABSTRACT

Progenitor cells are involved in the regeneration of the musculoskeletal system, which is known to be influenced by mechanical boundary conditions. Furthermore, matrix metalloproteases (MMPs) and tissue-specific inhibitors of metalloproteases (TIMPs) are crucial for matrix remodelling processes that occur during regeneration of bone and other tissues. This study has therefore investigated whether MMP activity affects mesenchymal stem cell (MSC) behavior and how MMP activity is influenced by the mechanical stimulation of these cells. Broad spectrum inhibition of MMPs altered the migration, proliferation, and osteogenic differentiation of MSCs. Expression analysis detected MMP-2, -3, -10, -11, -13, and -14, as well as TIMP-2, in MSCs at the mRNA and protein levels. Mechanical stimulation of MSCs led to an upregulation of their extracellular gelatinolytic activity, which was consistent with the increased protein levels seen for MMP-2, -3, -13, and TIMP-2. However, mRNA expression levels of MMPs/TIMPs showed no changes in response to mechanical stimulation, indicating an involvement of post-transcriptional regulatory processes such as alterations in MMP secretion or activation. One potential regulatory molecule might be the furin protease. Specific inhibition of MMP-2, -3, and -13 showed MMP-13 to be involved in osteogenic differentiation. The results of this study suggest that MSC function is controlled by MMP activity, which in turn is regulated by mechanical stimulation of cells. Thus, MMP/TIMP balance seems to play an essential role in transferring mechanical signals into MSC function. Disclosure of potential conflicts of interest is found at the end of this article.


Subject(s)
Matrix Metalloproteinases/physiology , Mechanotransduction, Cellular , Mesenchymal Stem Cells/physiology , Musculoskeletal Physiological Phenomena , Regeneration , Aged , Aged, 80 and over , Cells, Cultured , Dipeptides/pharmacology , Furin/physiology , Gene Expression Regulation , Humans , Matrix Metalloproteinase 13/physiology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mechanotransduction, Cellular/genetics , Middle Aged , Models, Biological , Musculoskeletal Physiological Phenomena/drug effects , Protease Inhibitors/pharmacology , Regeneration/drug effects , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinases/genetics
20.
Stem Cells ; 25(4): 903-10, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17218399

ABSTRACT

In fracture and bone defect healing, MSCs largely drive tissue regeneration. MSCs have been shown to promote angiogenesis both in vivo and in vitro. Angiogenesis is a prerequisite to large tissue reconstitution. The present study investigated how mechanical loading of MSCs influences their proangiogenic capacity. The results show a significant enhancement of angiogenesis by conditioned media from mechanically stimulated compared with unstimulated MSCs in two-dimensional tube formation and three-dimensional spheroid sprouting assays. In particular, proliferation but not migration or adhesion of endothelial cells was elevated. Promotion of angiogenesis was dependent upon fibroblast growth factor receptor 1 (FGFR1) signaling. Moreover, stimulation of tube formation was inhibited by vascular endothelial growth factor receptor (VEGFR) tyrosine kinase blocking. Screening for the expression levels of different soluble regulators of angiogenesis revealed an enrichment of matrix metalloprotease 2, transforming growth factor beta1, and basic fibroblast growth factor but not of vascular endothelial growth factor in response to mechanical stimulation. In conclusion, mechanical loading of MSCs seems to result in a paracrine stimulation of angiogenesis, most likely by the regulation of a network of several angiogenic molecules. The underlying mechanism appears to be dependent on the FGFR and VEGFR signaling cascades and might be mediated by an additional cross-talk with other pathways.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic/physiology , Arthroplasty, Replacement, Hip , Bioreactors , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Division , Culture Media , Flow Cytometry , Humans , Receptors, Fibroblast Growth Factor/physiology , Receptors, Vascular Endothelial Growth Factor/physiology , Regeneration , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...